Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.

نویسندگان

  • Alvaro Molina-Cruz
  • Gaspar E Canepa
  • Nitin Kamath
  • Noelle V Pavlovic
  • Jianbing Mu
  • Urvashi N Ramphul
  • Jose Luis Ramirez
  • Carolina Barillas-Mury
چکیده

Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells.

The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were...

متن کامل

Immune Escape Strategies of Malaria Parasites

Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of thes...

متن کامل

Parasitemia and Hematological Alterations in Malaria: A Study from the Highly Affected Zones

Background& Objectives: Inspite of intensive worldwide efforts to reduce its transmission, malaria remains the most serious and widespread protozoal infection of humans. It is a protozoan disease transmitted by the bite of infected female anopheles mosquito. Malaria has long featured prominently in the grey area between parasitology and hematology. This study has been...

متن کامل

Molecular Analysis of Pfs47-Mediated Plasmodium Evasion of Mosquito Immunity

Malaria is a life-threatening disease caused by Plasmodium falciparum parasites that is transmitted through the bites of infected anopheline mosquitoes. P. falciparum dispersal from Africa, as a result of human migration, required adaptation of the parasite to several different indigenous anopheline species. The mosquito immune system can greatly limit infection and P. falciparum evolved a stra...

متن کامل

Immune Regulation of Plasmodium Is Anopheles Species Specific and Infection Intensity Dependent

Malaria parasite ookinetes must traverse the vector mosquito midgut epithelium to transform into sporozoite-producing oocysts. The Anopheles innate immune system is a key regulator of this process, thereby determining vector competence and disease transmission. The role of Anopheles innate immunity factors as agonists or antagonists of malaria parasite infection has been previously determined u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 49  شماره 

صفحات  -

تاریخ انتشار 2015